
Chapter 1 : Newtom Method

Newton Method

Consider a vector valued function F : R → R such that

F(x) = 0 (1)

where x ∈ R. Therefor,

F(x1, x2, x3, . . .) =
[f1(x1, . . . , xn)

. . . fn(x1, . . . , xn)
] (2)

We needed to solve the **Eq-1** which represents a system of equations, for sake of generality we
consider that system may be nonlinear.

Newton’s method for solving systems of nonlinear equations is an extension of the Newton-Raphson
method for scalar equations, applied to vector-valued functions. It’s used to find the roots (or zeros) of a
system of nonlinear equations, where the system can be expressed as:

F(x) = 0

where F(x) is a vector of nonlinear functions F1(x1, x2, . . . , xn), F2(x1, x2, . . . , xn), . . . , Fn(x1, x2, . . . , xn)

that map from Rn to Rn.

Steps for Newton’s Method

The steps for applying Newton’s method to solve a system of nonlinear equations are as follows:

1. Initial Guess: Start with an initial guess x(0).

2. Update Formula: Update the guess iteratively using the formula:

x(k+1) = x(k) −
[
J(x(k))

]−1
F(x(k))

where:

• x(k) is the current approximation of the root.

• J(x(k)) is the Jacobian matrix of F(x) evaluated at x(k).

• F(x(k)) is the vector of function values at x(k).

•
[
J(x(k))

]−1
is the inverse of the Jacobian matrix.

3. Convergence: Iterate until the change between consecutive guesses is sufficiently small (i.e., ∥x(k+1) −
x(k)∥ is less than a tolerance).

2

Jacobian Matrix

For a system of n equations in n unknowns, the Jacobian matrix J(x) is the n × n matrix of partial deriva-
tives:

J(x) =


∂F1
∂x1

∂F1
∂x2

· · · ∂F1
∂xn

∂F2
∂x1

∂F2
∂x2

· · · ∂F2
∂xn

...
...

. . .
...

∂Fn
∂x1

∂Fn
∂x2

· · · ∂Fn
∂xn


Example

Consider the system of equations: x2
1 + x2

2 = 1

x2
1 − x2 = 0

The system can be written as F(x) = 0, where F1(x1, x2) = x2
1 + x2

2 − 1 and F2(x1, x2) = x2
1 − x2.

Jacobian Matrix

The Jacobian matrix is:

J(x) =

(
2x1 2x2

2x1 −1

)

Newton’s Update

The update formula for Newton’s method is:

x(k+1) = x(k) −
[
J(x(k))

]−1
F(x(k))

You would compute the Jacobian at each iteration and solve for x(k+1).

Considerations

• Convergence: Newton’s method may not always converge, especially if the initial guess is far from
the true solution or if the Jacobian is singular or nearly singular.

• Choosing Initial Guess: The choice of initial guess x(0) is critical. A good starting point can improve
the likelihood of convergence.

3

Newton’s Method for Solving Nonlinear Systems

Algorithm 1: Newton’s Method for
Solving Nonlinear Systems
1. Input Functions: F(x) represents the
vector-valued function F(x).
2. Initialization: Start with an initial
guess x(0).
3. Linear Solver: Solve the system
J(x)y = −F(x) using ‘np.linalg.solve‘.
4. Update: Compute the next iteration
x(k) = x(k−1) + y(k−1).
5. Convergence: Check if the norm of y
is less than the tolerance ϵ.

1: Initialization: Let x(0) =


x(0)1

x(0)2
...

x(0)n

 be a given initial vector.

2: Jacobian Matrix and Function Vector: Compute the Jacobian
matrix J(x(0)) and the function vector F(x(0)).

3: Linear System: Solve for y(0) from:

J(x(0))y(0) = −F(x(0)).

4: Update: Update the solution:

x(1) = x(0) + y(0).

5: for k = 1, 2, . . . do
6: y(k−1) = −J(x(k−1))−1F(x(k−1))

7: x(k) = x(k−1) + y(k−1)

8: if ∥F(x(k))∥ (or the norm of the update ∥y(k−1)∥) is below a
predefined tolerance ϵ then

9: break
10: end if
11: end for

4

Implementations of above algorithms

Listing 1: Python code for solving a nonlinear system using Newton’s
method

1 import numpy as np

2

3 def NewtonMethodforSys(F, J, x0, tol=1e-6, max_iter=100):

4 """

5 Newton's Method for solving nonlinear systems.

6

7 Parameters:

8 F: callable

9 Function vector F(x), where x is an n-dimensional array

.

10 J: callable

11 Jacobian matrix J(x), where x is an n-dimensional array

.

12 x0: ndarray

13 Initial guess for the solution.

14 tol: float

15 Tolerance for convergence.

16 max_iter: int

17 Maximum number of iterations.

18

19 Returns:

20 x: ndarray

21 Approximation to the root of F(x) = 0.

22 num_iter: int

23 Number of iterations performed.

24 """

25 x = np.array(x0, dtype=float)

26 for k in range(max_iter):

27 Fx = F(x) # Evaluate F(x)

28 Jx = J(x) # Evaluate J(x)

29

30 # Solve J(x) * y = -F(x) for y using numpy's linear solver

31 try:

32 y = np.linalg.solve(Jx, -Fx)

33 except np.linalg.LinAlgError:

34 raise ValueError("Jacobian is singular at iteration {}.

".format(k))

35

36 # Update x

37 x = x + y

38

39 # Check for convergence

40 if np.linalg.norm(y, ord=2) < tol:

41 return x, k + 1 # Return the solution and iterations

42

43 raise ValueError("Newton's method did not converge within the

maximum iterations.")

5

Listing 2: Python code for solving a nonlinear system using Newton’s
method

1 import matplotlib.pyplot as plt

2

3 def plot_solution(F, solution, original_guess):

4 """

5 Plot the original guess vs the approximate solution.

6

7 Parameters:

8 F: callable

9 Function vector F(x), where x is an n-dimensional array

.

10 solution: ndarray

11 Approximate solution to the system of equations.

12 original_guess: ndarray

13 Initial guess for the solution.

14 """

15 x_labels = [f"x{i+1}" for i in range(len(solution))] # Labels

for variables

16 width = 0.35 # Bar width for plotting

17

18 # Prepare the data

19 original_values = original_guess

20 approx_values = solution

21

22 # Plot original vs approximate values

23 x = np.arange(len(solution))

24 fig, ax = plt.subplots(figsize=(8, 5))

25 ax.bar(x - width / 2, original_values, width, label="Initial

Guess", color="skyblue")

26 ax.bar(x + width / 2, approx_values, width, label="Approximate

Solution", color="orange")

27

28 # Adding labels and title

29 ax.set_xlabel("Variables")

30 ax.set_ylabel("Values")

31 ax.set_title("Initial Guess vs Approximate Solution")

32 ax.set_xticks(x)

33 ax.set_xticklabels(x_labels)

34 ax.legend()

35

36 # Display the plot

37 plt.grid(axis="y", linestyle="--", alpha=0.7)

38 plt.tight_layout()

39 plt.show()

Exercise 1. Solve systems of polynomial equations F(x) = [x2
1 + x2

2 −
1, x2

1 − x2].

The Procedure to Solve the Polynomial Systems of Equations
which are also Nonlinear Systems of Equations

6

1. From the second equation: x2 = x2
1.

2. Substitute into the first equation: x2
1 + (x2

1)
2 − 1 = 0, which

simplifies to: x4
1 + x2

1 − 1 = 0..
3. Let y = x2

1, so y2 + y − 1 = 0. Solve for y using the quadratic

formula: y = −1±
√

5
2 . Only the positive root is valid, so y = −1+

√
5

2 .

4. Thus, x1 = ±
√

−1+
√

5
2 and x2 = x2

1.

The solutions are: x1 = ±
√

−1+
√

5
2 , x2 = −1+

√
5

2 .

Solving above exercise using our Newtom Algorithm

Figure 1: A marginfigure shows up in
the margin.

Listing 3: Python code for solving a nonlinear system using Newton’s
method

1 def F(x):

2 # Example: System of nonlinear equations

3 # F(x) = [x1^2 + x2^2 - 1, x1^2 - x2]

4 return np.array([

5 x[0]**2 + x[1]**2 - 1,

6 x[0]**2 - x[1]

7])

8

9 def J(x):

10 # Jacobian of F(x)

11 # J(x) = [[2*x1, 2*x2],

12 # [2*x1, -1]]

13 return np.array([

14 [2 * x[0], 2 * x[1]],

15 [2 * x[0], -1]

16])

17

18 # Initial guess

19 x0 = [0.5, 0.5]

20

21 # Solve using Newton's Method

22 try:

23 solution, iterations = NewtonMethodforSys(F, J, x0)

24 print("Solution:", solution)

25 print("Iterations:", iterations)

26 except ValueError as e:

27 print(e)

28

29

30 x1 = np.sqrt((-1 + np.sqrt(5))/2)

31 x2 = (-1 + np.sqrt(5))/2

32 original_guess = np.array([x1, x2]) # Initial guess

33 original_guess = [0.5, 0.5] # Initial guess

34 solution, _ = NewtonMethodforSys(F, J, original_guess) # Solve the

system

7

35

36 # Plot the results

37 plot_solution(F, solution, original_guess)

Exercise 2 (2). Solve the system of nonlinear equations

Figure 2: A marginfigure shows up in
the margin.

Listing 4: Python code for solving a nonlinear system using Newton’s
method

1 # Example

2 def F(x):

3 return np.array([

4 3*x[0] - np.cos(x[1]*x[2]) - 1/2,

5 x[0]**2 - 81*(x[1] + 0.1)**2 + np.sin(x[2]) + 1.06,

6 np.exp(-x[0]*x[1]) + 20*x[2] + (10*np.pi - 3)/3

7])

8

9 def J(x):

10 return np.array([

11 [3, x[2]*np.sin(x[1]*x[2]), x[1]*np.sin(x[1]*x[2])],

12 [2*x[0], -162*(x[1] + 0.1), np.cos(x[2])],

13 [-x[1]*np.exp(-x[0]*x[1]), -x[0]*np.exp(-x[0]*x[1]), 20]

14])

15

16 x0 = [0.1, 0.1, -0.1]

17 solution, iterations = NewtonMethodforSys(F, J, x0)

18 print("Solution:", solution)

19 print("Iterations:", iterations)

% Set custom margins for one page with adjusted text height

8

Conclusion

Newton-Raphson algorithm is working well for the solving systems of nonlinear equations, where we
have to compute the jacobian for the systems of the equations using the iterative procedure i.e the gradi-
ent of the system of function ok. there may be possibility that function has local minima where gradient
is equal to zero. so we have no solution there. Thus computing Jacobian for the discontinuous or the
non-differentiable function it is become difficult to get the solutions.

Chapter 2 : Broyden method

We know that the Newtom method uses the Jacobian computation exactly, while it is difficult to com-
pute the derivatives for the discontinuous for non differetialble function therefore we uses to approxi-
mate this jacobian matrix suing the Quasi-Newtom Approximation method where we update the matrix
at each iterations.

Let F(x) = 0 be the nonlinear system of equation that we wanted to solve thus we approximate the
jacobian J(x) by A at each iteration get updated. xi+1 = xi − A−1

i F(x(1)

Listing 1: Python code for solving a nonlinear system using Newton’s method
1 import numpy as np

2

3 def broyden_method(F, x0, tol=1e-5, max_iter=100):

4 """

5 Broyden's method for solving F(x) = 0.

6

7 Parameters:

8 F : function

9 The function for which we are seeking a root.

10 x0 : numpy array

11 Initial guess for the root.

12 tol : float

13 Tolerance for convergence.

14 max_iter : int

15 Maximum number of iterations.

16

17 Returns:

18 x : numpy array

19 The estimated root.

20 """

21 n = len(x0)

22 x = x0

23 B = np.eye(n) # Initial approximation to the Jacobian is the identity matrix

24 for i in range(max_iter):

25 Fx = F(x)

26 if np.linalg.norm(Fx, ord=2) < tol:

27 print(f'Converged in {i} iterations')

28 return x

29 dx = -np.linalg.solve(B, Fx)

30 x_new = x + dx

31 Fx_new = F(x_new)

32 y = Fx_new - Fx

33 B += np.outer((y - B @ dx), dx) / np.dot(dx, dx)

34 x = x_new

2

35 raise ValueError('Broyden method did not converge')

36

37 # Example usage

38 def F(x):

39 return np.array([x[0]**2 + x[1]**2 - 1, x[0] - x[1]])

40 x0 = np.array([1.0, 1.0])

41 #x0 = np.array([0.5, 0.5])

42 root = broyden_method(F, x0)

43 print('Root:', root)

Exercise 1. Solve the system of nonlinear equation using Broyden method

Listing 2: Python code for solving a nonlinear system using Newton’s method

1

2 # Example usage

3 def F(x):

4 return np.array([x[0]**2 + x[1]**2 - 4, x[0] - x[1]])

5

6 def J(x):

7 return np.array([[2*x[0], 2*x[1]], [1, -1]])

8

9 x0 = np.array([0.5, 0.5])

10 solution = broyden_method(F, J, x0)

11 print('Solution:', solution)

	Chapter 1 : Newtom Method
	Steps for Newton's Method
	Jacobian Matrix
	Example
	Considerations
	Solving above exercise using our Newtom Algorithm
	Conclusion

	Chapter 2 : Broyden method

