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Preface

Discrete differential geometry (DDG) represents a paradigm shift in computational geom-

etry, emphasizing structure-preserving discretization of smooth geometric objects rather

than mere equation approximations. Unlike traditional numerical methods that discretize

differential or integral equations, DDG prioritizes the geometric essence by transforming

curves into graphs, surfaces into triangle meshes, and embedding these discrete struc-

tures into space as piecewise-linear manifolds. This approach ensures that fundamental

geometric properties, from curvature to topology, are faithfully preserved in computable

frameworks.

This dissertation Discrete Differential Geometry and Its Applications explores dis-

cretization of smooth differential geometric objects such as curves, surfaces etc. to their

discrete analog discrete curves, discrete surfaces and their intrinsic properties like cur-

vature and topology. Central to this work is Discrete Gauss-Bonnet Theorem which

bridges combinatorial surface and smooth geometry and Discrete Laplacian-Beltrami

Operator a cornerstone for many applications in shape modeling, geometric processing

and physical simulation in discrete surfaces.

My journey into the field of differential geometry began during undergraduate studies

in Applied Mathematics, where I encountered the challenges related to the translation

of smooth geometry of curves and surfaces into practically implementable algorithms.

I explored further and got introduced with DDG’s discrete Laplacian-Beltrami operator

which played a pivotal role in geometric processing and analysis of the geometry of shapes.

I extend profound gratitude to my supervisor Prof. Bankteshwar Tiwari for their men-



torship in my master dissertation, who tested my learning from theoretical to practical re-

sults. A special acknowledgement goes to the open-source computational geometry cum

discrete differential geometry community, whose library in python and C++ enables prac-

tical implementation faster.

Note :The practical code, triangle mesh data and results are available at github repository

link : https://github.com/ajeetkbhardwaj/ddg-lab-for-master-thesis

Ajeet Kumar
Varanasi, June 2025
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Chapter 1

Introduction

In today’s world, most of the manufactured objects and digital movie scenes frommechan-

ical parts to artistic creations are first designed on computers via specialized softwares.

Where, discrete differential geometry(DDG) providesmathematical backbone(foundation)

from shape modelling to process them. We know that many industries like gaming and

entertainment, textile fashion, transportation and logistics, automotive defense, healthcare

and life sciences, construction and infrastructure have transformed due to 3D shape mod-

eling and processing and now they mostly rely on the digital 3D shape creation therefore,

more accurate and efficient geometric tools and algorithms become critical.

1.1 Motivation

What is the goal of discrete differential geometry ? The goal of DDG is to learn how

to design, program and analyse algorithms that enables interactive 3D shape modelling

and digital geometric processing, which bridges that gap between theoretical and practi-

cal for working with shapes. DDG provides a foundation to understand the theory and

applications of the 2D and 3D shape processing and use algorithms for modelling and

manipulating to accurately describe, analyse and transform real-life or imagine objects

into digital shapes on a computer with their 2D/3D geometric structures. Thus, ultimate

DDG enables us to build robust, efficient and expressive tools for applications ranging
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from computer graphics and animation to scientific computing, simulations and digital

fabrication.

What are the industry, where we use discrete differential geometry ? DDG has a wide

range of applications across both research and industry, due to its ability to model, analyse

and manipulate complex geometric structures efficiently. There are few key area where

DDG are used as follows

1. Medicine and Prosthetics

2. Product Design and Prototyping

3. Architecture

4. Cultural Heritage

5. Digital Human and Avatars

6. Geographical Systems and Urban Planning

7. Manufacturing and Fabrication

8. Apparel and Fashion.

Thus, we can say that DDG plays a very important role in modern computational design

where geometry determines the visual appearance and physical behaviour of products and

structures.

1.2 Geometry Acquisition Pipeline

Geometry acquisition is the study of using techniques and technology to capture 3D shape

and surface properties of real-world objects and environment. Today we require geometric

data in autonomous driving, construction of industrial facilities and 3D reconstruction of

the human body organism etc. We use the discrete differential geometry to process these

geometric data for various applications like in autonomous cars, perceive their surround-

ings for obstacle detection, industrial facilities maintenance, planning and virtual tours

2 Ajeet Kumar
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Figure 1.1: Left : Principle of laser triangulation, Right : LiDAR scanner https://en.
wikipedia.org/wiki/Lidar

and healthcare for diagnostics, surgical planning and creating patient specific models etc.

So, we can say that geometry acquisition pipeline is a process such that a physical object

is digitized through following steps

1. Scanning : A 3D scanner will capture shape and surface geometry of the physical

object from multiple view points and we collect a set of range images, each image

is a distance to object surface. So, geometry acquisition pipeline is a process such

Ajeet Kumar 3
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CHAPTER 1. INTRODUCTION

that a physical object is digitized through following steps

2. Registration : We obtained scanned images from different angles and range images

in their own local coordinate systems. Thus, the Registration aim is to bring all of

these range image’s local coordinates under one common coordinate system.

3. Stitching/Reconstruction : After registration of scanned images, we integrate these

aligned scans into a single,coherent 3D mesh connecting the points from the regis-

tered range image to create a continuous surface representation of the 3D physical

object to 3D digital mesh object.

4. Post Processing : We refine the generated digital 3Dmesh by performing operation

such as

topological filtering, correct any issue related to the connectivity in the mesh

such as hole, non-manifold edge etc.

Geometric-filtering, smooth out noise in surface geometry of digital 3D mesh.

Remeshing, create a more regular and structured mesh.

Compression , reduction of final size of 3D model which preserves geometric

details. and many more.

1.3 Pre-requisites

1.3.1 Differential Geometry

Differential geometry is a field of geometry that studies smooth-varying shapes called

smooth manifolds such as smooth curves and surfaces are 1-dim and 2-dim smooth man-

ifolds resp.

Definition 1.3.1: Parameterized Curves
Let I ∈ R be an open interval then γ : I → Rn be a map from the interval to the

euclidean space that is said to be a parameterized curve.

4 Ajeet Kumar
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In particular, γ : I → R2 defined as γ(t) =(x(t), y(t)) ∀t ∈ I is a plane curve and

γ : I → R3 defined as γ(t) =(x(t), y(t), z(t)) ∀t ∈ I is a space curve.

Definition 1.3.2: Smooth Curve
A parameterized curve γ : I → Rn is said to be regular(smooth) iff dγ(t) 6= 0, ∀t ∈

I i.e velocity of the curve never vanishes at any point.

Definition 1.3.3: Parameterized Surface
Let U ⊆ R2 be a subset and a diffeomorphismmap f : U → Rn which takes region

in 2-dim to the euclidean space such that image f(U) ⊆ is called as parameterized

surface.

Definition 1.3.4: Embeddings
Amap f is an embedding if it is a homeomorphism onto its image, i.e., a continuous

bijection with a continuous inverse.

Definition 1.3.5: Differential
Let f : U → Rn be a parameterized surface then differential dfp : TpU → Tf(p)Rn

at a point p ∈ U tells how tangent vectors in domain U are mapped(stretched out)

into euclidean space Rn[11].

Let a tangent vectorX ∈ TpU then dfp(X) = JfX ∈ Rn where Jf is the jacobian of size

n × 2. Hence, we can say that df differential pushes forward, tangent vectors in planner

region to the euclidean space.If we choose

f(u, v) = (x(u, v), y(u, v), z(u, v))

be a surface then

df =

[
∂f

∂u

∂f

∂v

]
=


∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

 = JfX

Jf is the Jacobian matrix.

Ajeet Kumar 5
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Definition 1.3.6: Immersion
A map f : U → Rn is an immersion if its differential dfp : TpU → Tf(p)Rn is

injective at every point(non-degenerate) i.e for X ∈ TpU, dfp(X) = 0 ⇐⇒ Xp =

0 ∀p ∈ U

Immersions are locally embeddings but may have self-intersections globally. Thus, we

can say immersion(regularity) of surfaces is necessary to define quantities like tangent,

normal etc on surfaces.

1.3.2 Combinatorial Surfaces
Definition 1.3.7: Simplicial Surface
It is a simplicial 2-manifold which is a triangle mesh having regularity properties

like topological connectivity & geometry such vertex coordinate describes simpli-

cial immersions.

Definition 1.3.8: Abstract Simplicial Surface
It is a simplicial 2-complex, having

• Highest degree simplicies are triangles

• Every edge, glue two triangles together and on boundary, only one.

Definition 1.3.9: Simplicial map
A simplicial map is a map between simplicial complexes that sends simplices to

simplices linearly based on their vertices σ : K → K ′, where each simplex σ ∈

K maps to a simplex k(σ) ∈ K ′.

How to give shape to an Abstract Simplicial Surface ? To embed an abstract simplicial

surface into R3, we assign coordinates to each vertex. This process is described as a 0-

form on the simplicial complex. We define a map f : V → R3 such that for each vertex

vi ∈ V , we have f(vi) = fi ∈ R3. Now, this also map edges using linear interpolation

called 1-form such that f : E → R3, for each (vi, vj) ∈ E. =⇒ f((vi, vj)) = tfi +

(1− t)fj, where t ∈ [0, 1]. and further extend this to triangular faces using barycentric

coordinates which is called 2-form f : F → R3, for each triangle4 = (v0, v1, v2) ∈

6 Ajeet Kumar
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F, =⇒ f(4) = t0f0 + t1f1 + t2f2, where t0 + t1 + t2 = 1 and ti ≥ 0.

Half-edge data structure The half-edge data structure is a powerful way to store the

polygonal meshes in the memory. It enables efficient traversal and manipulation of mesh

connectivity, which is essential for algorithms that require access to neighboring elements.

Every half-edge in themesh is split into two oppositely oriented half edges. Each half-edge

Figure 1.2: Half edge data structure Figure 1.3: OFF or OBJ file format

stores pointers to its twin (the other half of the same edge, but in the opposite direction), its

next half-edge in the current face (circulating counterclockwise), the vertex it points from,

the edge it belongs to, and the face it borders. Each of these elements stores a pointer to

one of its incident half-edges, enabling traversal from any mesh element to its neighbors.

So, our basic data structure for triangle mesh consists of 1. A list of vertex coordinates in

R3 2. A list of triangles, each defined by 3 ordered vertex indices i, j, k ∈ N. The order

of the vertices define the direction of the normal.

The ‘OFF‘ format, or Object File Format, stores this information in a ‘.off‘ file, which we

will use for a triangle mesh.

Ajeet Kumar 7
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1.3.3 Discrete Exterior Calculus

An exterior calculus is the generalization of the calculus concepts like gradient, curl and

divergence on smooth manifolds using idea of differential forms and operators like func-

tions, vector fields, area forms, volume forms and exterior derivative d, Hodge star ∗,

wedge product resp. Vector calculus is the coordinate system-based language, used to de-

scribe the geometric quantities on smoothmanifoldswhile exterior calculus is the coordinate-

free language for the same. We will try to study the discretized concepts of exterior cal-

culus on the discrete surfaces(triangular meshes) called discrete exterior calculus.

Discrete differential forms

A discrete differential form on a triangulated mesh M = (V,E, F ) is a function that

assigns real values to k simplices (vertices, edges, or faces) as follows - 0-forms: Assign a

value to each vertex V representing scalar fields on the mesh. - 1-forms: Assign a value to

each edge E, representing integrated quantities like vector fields along edges. - 2-forms:

Assign a value to each face F , representing area-related quantities, such as flux through

faces.

Table 1.1: Smooth vs. Discrete Forms (with Hodge Star)

Degree Smooth Form Discrete Form Mesh Element Hodge Star (maps to)

0 Scalar field f Value at vertices Vertices (V ) Dual face (area)
1 Line integral ω Value on edges Edges (E) Dual edge (length ratio)
2 Surface integral η Value on faces Faces (F ) Dual vertex (scalar)

Definition 1.3.10: Discrete exterior derivative
The discrete exterior derivative dk maps discrete k forms to discrete k + 1-forms.

It is defined as the adjoint of the boundary operator, generalizing the notion of dif-

ferentiation to the mesh setting:

〈c, dkα〉 = 〈∂k+1c, α〉

where α is a k-form.

The value of the derivative of α on a (k+1)-chain c equals the value of α on the boundary

8 Ajeet Kumar
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of c. This construction ensures that key theorems like Stokes’ theorem hold in the discrete

setting.

Definition 1.3.11: Discrete Hodge Star

The discrete Hodge star is an operator that maps a k-form to an (n − k)-form on

the dual mesh, incorporating the geometric information of the mesh.

For triangle meshes, the discrete Hodge star is typically defined using ratios of volumes

(lengths, areas) between primal and dual mesh elements as follows

1. For a 0-form at a vertex, the Hodge star yields a value on the dual face (typically an

area).

2. For a 1-form on an edge, it yields a value on the dual edge, often involving a length

ratio.

3. For a 2-form on a face, it yields a value at the dual vertex(scalar)

1.4 An overview

In the next chapter we will explore the discrete curves in plane and space, discuss geomet-

ric quantities like discrete differential and discrete curvature and at the end fundamental

theorem of discrete curves.

Then, move to the discrete surfaces, will cover discrete surface and it’s regularity condi-

tion, discrete Gauss-Bonnet theorem, area weights and cotangent formula for computation

of laplacian beltrami operator on triangle mesh.

The last will explore different applications on the laplacian beltrami operator from smoothen-

ing, physical simulation and geodesic computation on discrete surfaces.

Ajeet Kumar 9



Chapter 2

Discrete Curves

Discrete curve is the representation of a curve that has finitely many degrees of freedom

like a polygonal curve, a spline curve, a subdivision curve, etc. Each of them has only a

finite number of control points.

A smooth curve has geometric quantities which define the curve itself. Canwe define these

quantities for discrete curves ? such as the derivative of a curve at any point can be defined

as a discrete differential and define different ways to compute the geometric invariant

quantities for a discrete curve such as curvature and torsion based on the requirements.

In the end, try to give a discrete analogous to the fundamental theorem of plane and space

curve and then based on these theorems design the algorithm to recover the discrete curve

itself, given the curvature, torsion and initial vector.

2.1 Polygonal/Discrete curve

Definition 2.1.1: Discrete Plane Curve
A discrete plane curve, or more precisely a polygonal curve, is a map γ : I → R2

defined as γ(si) = γi ∈ R2 ∀si ∈ I where I = {s0, s1, . . . , sn} such that every pair

of point should have non-zero linear interpolation(line-segment) |γi+1−γi| 6= 0 and

no 180o folding back of γi+1 − γi ∀i



CHAPTER 2. DISCRETE CURVES

Figure 2.1: Discrete curve [5]

So, we can say that it is a simplicial 1-complex i.e. a connected graphG = (V,E) having

a set of vertices and edges such that γ : V → R2, it’s values give the location of vertices in

the plane and γ : E → R2 is the piecewise linear interpolation between any two ordered

pair of vertices.

2.2 Discrete Differential, Tangent, Normal

Definition 2.2.1: Discrete Differential
Consider γ : I → R2 be a discrete plane curve, then the discrete differential will

be equal to

(dγ)ij = γj − γi

Remark 1 Discrete differential is a finite difference between any pair of vertices that

represents an edge vector.

Definition 2.2.2: Length of a discrete curve

Let γ : I → R2 be a discrete plane curve then the length of γ over I will be equal to

Ajeet Kumar 11
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Figure 2.2: Discrete differential [5]

Figure 2.3: Discrete tangent[5]

L(γ) =
n∑

i=1

|γi+1 − γi|

Remark 2 Length of discrete plane curve is the sum of all edge lengths of the curve.

Remark 3 A discrete curve is said to be parameterised in arc length iff |(dγ)ij| = 1 ∀i, j

Definition 2.2.3: Discrete Tangent
A discrete tangent is a normalized discrete differential per edge, which means it is a

unit-length edge vector. Thus, for a given discrete plane curve γ : I → R2, discrete

tangent will be equal to

Tij =
(dγ)ij
|(dγ)ij|

=
γi+1 − γi
|γi+1 − γi|

∀ i, j

Remark 4 Discrete tangents are not defined at vertices, only defined at edges.

12 Ajeet Kumar
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Figure 2.4: Discrete normal, where = is the 90o rotation operator[5]

Definition 2.2.4: Discrete Normal
Discrete normals are just the 90o degree rotation of the discrete tangent vectors

counterclockwise as Nij = R90◦Tij , where R90◦ =

cos(90◦) −sin(90◦)
sin(90◦) cos(90◦)

 =

0 −1
1 0

 be a rotation matrix that rotates the discrete tangent Tij by 90◦.

So, let Tij =

Tx

Ty

 then discrete normal will be Nij =

0 −1
1 0


Tx

Ty

 =

−Ty

Tx


Remark 5 The discrete normal is also a unit vector perpendicular to a discrete tangent

vector.

2.3 Regular Discrete Curve

Definition 2.3.1: Regular discrete curve
A discrete curve is said to be regular if

1. Non-zero differential (edge vector) dγij = γj − γi 6= 0, preventing the curve

from collapsing at any point.

2. No two consecutive edges are collinear and pointing in opposite directions,

i.e., no zero turning angles dγij
∥dγij∥ 6= ±

dγjk)

∥dγjk∥
for adjacent edges eij and ejk.

Remark : A discrete curve is regular if it is injective locally.

Why does regularity matter for the discrete curves ? We know that if a curve is smooth,
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CHAPTER 2. DISCRETE CURVES

Figure 2.5: Discrete regular curve [5]

then we can easily compute the many geometric variants and invariant quantities which

define the curve itself. Therefore, we need the regularity condition for the discrete curve

to compute certain geometric quantities.

2.4 Discrete curvature

Definition 2.4.1: Discrete Curvature
It is the curvature of the discrete curve that measures the bending of the curve in

plane as we move along the curve.

We know that tangents are well defined on a regular discrete curve over an edge vec-

tor(discrete differential); thus, discrete curvature measures how much the tangent vector

has turned as we move along the curve.

There are many ways to define the discrete curvature based on the different properties of

discrete curves, such as angle change, length variations, and osculating circle radius.
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2.4.1 Turning Angle

Theorem 2.4.1: Total Turning Angle
For a closed polygonal curve, the sum of the turning angles is exactly

∑
i

αi = 2π · n

where n is the turning number (typically 1 for a simple polygon with positive ori-

entation). [4]

Proof
Consider a discrete curve having a sequence of points γ0, γ1, . . . , γn = γ0. The

tangents are defined on the edges ti = γi+1−γi
∥γi+1−γi∥ .

Then the turning angle αi is the signed angle between two consecutive tangents ti−1

and ti, measured by αi = ∠(ti−1, ti) and each turning angle αi is the exterior angle

at the vertex i, which quantifies how much the tangent turns at that point.

For a closed curve, the total turning of the tangent vector as it goes around the curve

once must bring it back to its starting orientation. In the plane, this total angular

change is exactly ∑
i

αi = 2π · n

where n is the turning number.

For a simple polygon (non-self-intersecting), n = 1, so
∑

i αi = 2π

Theorem 2.4.2: The Gauss-Bonnet Theorem for Plane Curve
For closed, simple, positively oriented curve γ : I → R2, the total curvature of the

curve will be ∫
γ

κ ds = 2π · n

where κ is the curvature of the discrete curve. [4]

In analogy to the smooth curve, the curvature of the discrete curve is defined using
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(κds)i := αi ⇒
∑
i

κi dsi =
∑
i

αi = 2π · n

kidsi = αi ⇒ ki =
αi

ℓ

if ℓ = 1 then ki = αi

2.4.2 Length Variation

Theorem 2.4.3: Length Variation
Variation in the length can define the curvature of the discrete curves.

Proof
Let γi−1, γi, γi+1 be three points on the discrete curve γ and total length of the

curve is

L =
∑
i

ℓi,i+1 =
∑
i

|γi+1 − γi|

by small perturbation to the point γi as γi = γi + ϵγ̇i where γ̇i affects the two

adjacent incoming and outgoing edge vector at point γi of length ℓi−1,i&ℓi,i+1 resp.

Therefor change in the total length of curve L w.r.t to the point γi will be

∂L

∂γi
=

∂ℓi−1,i

∂γi
+

∂ℓi,i+1

∂γi

=
∂|γi − γi−1|

∂γi
+

∂|γi+1 − γi|
∂γi

=
γi − γi−1

|γi − γi−1|
+

γi − γi+1

|γi − γi+1|

= ti−1 − ti

We want the first variation of L, i.e., L̇, under a perturbation γi 7→ γi + εγ̇i. So, a
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discrete analogy to smooth variation.

L̇ =
∑

i

⟨
∂L
∂γi

, γ̇i

⟩
= −

∫
I
〈κN, γ̇〉ds

L̇ =
∑

i 〈ti−1 − ti, γ̇i〉 = −
∑

i 〈κiNi, γ̇i〉 (∆s)i

where κiNi ≈ ti+1 − ti defines the discrete curvature, and (∆s)i is the discrete arc

length element around vertex i.

2.4.3 Osculating Circle

Theorem 2.4.4: Osculating circle

Given a discrete curve γ : I → R2 and let any three consecutive point

γi−1, γi, γi+1 on it then curvature κi at point γi will be

κi =
2

ℓ
sin(

αi

2
)

where αi be the turning angle at point γi and l be the length of the differential(edge

vector). [4]

Proof
Given γ : I → R2 be a discrete curve and let consider any three consecutive point

γi−1, γi, γi+1 be on γ.

Let αi be the turning angle at point γi, that is the angle between the vectors γi−γi−1

and γi+1 − γi.

Assume that ℓ− = ℓ+ = ℓ where ℓ− = |γi − γi−1| and ℓ+ = |γi+1 − γi| be the

consecutive edge length of edge vectors.

Then there will be a unique circle passing through the three consecutive points

γi−1, γi, γi+1 and d will be the chord of that circle between point γi−1 and γi+1.

Thus, γi−1, γi, γi+1 forms a triangle and αi be the angle at vertex γi.

Now, by law of sin on circle

1

2R
=

sin(180◦ − αi)

d
=

sin(αi)

d
⇒ R =

d

2 sin(αi)
(2.1)
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and by law of cosine d2 = ℓ2 + ℓ2 − 2ℓ · ℓ · cos(180◦ − αi) = 2ℓ2(1 + cos(αi))

⇒ d2 = 2ℓ2(1 + cos(αi))

by using trigonometric identity cos(α) = 2 cos2(α/2)− 1 we get

1 + cos(αi) = 2 cos2
(αi

2

)
⇒ d2 = 4ℓ2 cos2

(αi

2

)
⇒ d = 2ℓ cos

(αi

2

)

Putting value of d in the our first equation we will get

R = d
2 sin(αi)

= 2ℓ cos(αi/2)
2 sin(αi)

= ℓ cos(αi/2)
sin(αi)

by sin(α) = 2 sin(α/2) cos(α/2)

R = ℓ cos(αi/2)
2 sin(αi/2) cos(αi/2)

= ℓ
2 sin(αi/2)

⇒ κi =
1
R
= 2

ℓ
sin
(
αi

2

)

2.5 Fundamental Theorem of Discrete Curves
Theorem 2.5.1: Fundamental Theorem of Discrete Plane Curves
A regular discrete plane curve is uniquely determined by its edge lengths and turning

angles, up to a rigid motion. [crane2018discrete]

Algorithm 1 Plane Curve Reconstruction
Require: Initial point, Edge lengths and Curvatures : γ0 ∈ R2, ℓ = [ℓ0, . . . , ℓn−1] and

κ = [κ0, . . . , κn−1]
Ensure: Plane curve γ = [γ0, . . . , γn]
1: γ[0]← γ0
2: T ← (1, 0)
3: for i = 0 to N − 1 do
4: ∆θ ← κ[i] · ℓ[i]
5: T ←R2D(T,∆θ)
6: γ[i+ 1]← γ[i] + ℓ[i] · T
7: return γ[0 . . . N ]
8: R2D((x, y), θ) = (x cos θ − y sin θ, x sin θ + y cos θ).
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Theorem 2.5.2: Fundamental Theorem of Discrete Space Curves
A discrete space curve is uniquely determined by its edge length, curvature(exterior

angle at vertex) and torsion(Change in the normal i.e. angle between edges joining

two planes.), upto rigid motion.[crane2018discrete]

Definition 2.5.1: Rotation Operator

Given u = (ux, uy, uz), the skew-symmetric matrix û is defined as: û =
0 uz −uy

−uz 0 ux

uy −ux 0

 The rotation operator is: R(u, θ) = exp(θû) which rotates

the vector by angle θ around axis u

Algorithm 2 Space Curve Reconstruction
Require: ℓij , κi, τij , γ0
Ensure: Space curve γ0, γ1, . . . , γn
1: Initialize T , N ▷ Orthonormal tangent/normal vectors
2: γ[0]← γ0
3: for i = 1 to n do
4: γi ← γi−1 + ℓi−1,iT
5: T ←R(N, κi)T ▷ Rotate tangent by curvature
6: N ←R(T, τi,i+1)N ▷ Twist normal by torsion
7: return {γi}ni=0

κi = i/n, τij = (n− i)/n
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Figure 2.6: Fundamental theorem for plane curves

Figure 2.7: Fundamental theorem for space curves
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Chapter 3

Discrete Surfaces

We have seen discrete curve which is a simplicial 1-complex realised in euclidean space,

have geometric invariant quantities like curvature and torsion etc. used to state that given

initial point and geometric invariant quantities, can retrace the curve upto rigid motion.

Now, we will move towards discrete surfaces.

In smooth manifolds, we know that a surface is a 2-dim manifold realized in 3-dim eu-

clidean space and if realization is nice enough, then it’s an immersed surface or embed-

ded surface in 3D euclidean space. Thus, a discrete surface is a simplicial 2-complex

M = (V,E, F ) which is realized discrete 2D manifold(piecewise linear surface) M by

function f : M → R3. So, we can say that a piecewise linear surface is a polygonal

mesh with the property that it is locally looks like a 3D Euclidean space. What is polyg-

onal mesh ? A polygonal mesh consists of a collection of vertices, edges and faces as

V,E & F resp and each edge eij ∈ E is a map from vi → vj where vi, vj ∈ V and each

face is a polygon descibed by a number nf of distinct edgesf = {e12, . . . , enf−1nf
} =

{(v1, v2), . . . , (vnf−1, vnf
)} so that every vertex involved in these edges occure exactly

twice. Therefore, a face is a cyclically ordered list of vertices f = (v1, . . . , vnf
).

Given a polygonal mesh, when can we say it’s a discrete manifold ?

A polygonal meshM = (V,E, F ) is said to be a discrete manifold if each edge eij ∈ E is

incident to one or two faces and the faces incident to each vertex vi ∈ V form a closed/open
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Figure 3.1: Left : Manifold mesh, Right : Non-manifold mesh [5]

cell.

3.1 Discrete 2D Manifolds

There are primarily two types of models for discrete surface

1. Simlicial 2-manifolds which naturally fits with exterior calculus

2. Nets, a piecewise integer lattice which is a natural fit with discrete integrable system.

But simplicial models of discrete surfaces are commonly used in many applications there-

fore they will be of our interest also for creating mesh manifolds.

Definition 3.1.1: Piecewise linear surface
A triangle meshM = (V,E, F ) is realised as a surface in 3D by assigning a vertex

position per vertex as a map f : V → R3. these vertex position are affinly interpo-

lated to form straight edges and flat triangular faces. The resulting surface is called

a piecewise linear surface. [4]

3.2 Topology of Discrete Manifolds

Topology of discrete manifolds discuss the connectivity of the faces, edges and vertices.
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Definition 3.2.1: Euler polyhedral formula
Every polygonal disk and sphere with vertices, edges and faces as V,E & F resp.

satisfies

|V | − |E|+ |F | = 1 (3.1)

and

|V | − |E|+ |F | = 2 (3.2)

resp.

Theorem 3.2.1: Euler Characteristics
The euler characteristics of any discrete manifoldM = (V,E, F ) is defined by

χ(M) := |V | − |E|+ |F | (3.3)

3.3 Regularity of Discrete Surface

Consider a triangle mesh M and a map f : M → R3 is a discrete immersion if every

vertex star is embedded, i.e., the union of faces around every vertex is mapped injectively

into R3. This prevents local branching and ensures a well-defined tangent space.

Definition 3.3.1: Surface Immersion and Embedding
A piecewise linear surface is an immersion if

1. Each triangle has a non-zero area

2. Triangles incident to each vertex do not intersect each other.

A piecewise-linear surface is an embedding if it has no self-intersection. [5]
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Figure 3.2: Left : Discrete differential, Right : Discrete normal [5]

3.4 Differential, Tangent and Normal of Discrete Surface

Definition 3.4.1: Discrete Differential
The discrete differential df is the exterior derivative of a 0-form f , and it assigns

one value per oriented edge (i, j). Formally,

(df)ij =

∫
(i,j)

df
Stokes
=⇒

∫
∂(i,j)

f = fj − fi.

Hence, the discrete differential is simply the edge vector from i to j, (df)ij = fj − fi.

Remark -1 : df is a discrete 1-form and it is asymmetric with respect to orientation (df)ij =

−(df)ji.

Definition 3.4.2: Discrete Tangent
The discrete tangent is a unit length edge vector such that for a triangular face with

vertices i, j, k, we define two edge vectors using df : (df)ij = fj − fi, (df)ik =

fk − fi. These edge vectors span Tangent plane of the face = span{(df)ij, (df)ik}.

and also encode the local orientation of the surface.
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Definition 3.4.3: Discrete Normal
The discrete face normalNijk of triangle (i, j, k) is computed using the cross prod-

uct of edge vectors(discrete differentials)

Nijk =
(df)ij × (df)jk
‖(df)ij × (df)jk‖

.

Where, (df)ij × (df)jk is a vector perpendicular to the face.

Remark-1 The normalization ensures thatNijk is a unit normal and orientation is consistent

using the right-hand rule (counter-clockwise vertex order).

Definition 3.4.4: Triangle Area and Total Area of Mesh
LetM be a triangle mesh and fijk be a face with edges fij & fik then face(triangle)

is

Ai =
1

2
|fij × fik|

and Total area of the meshM is

∑
∀ fijk∈F

A(fijk)

Algorithm 3 ComputeFaceAreas
1: procedure ComputeFaceAreas(V, F )
2: Input: V ∈ Rn×3 (vertices), F ∈ Nm×3 (faces)
3: Output: face_areas ∈ Rm

4: for each face f = (i, j, k) in F do
5: v0 ← V [i], v1 ← V [j], v2 ← V [k]
6: e1 ← v1 − v0, e2 ← v2 − v0
7: n← e1 × e2
8: Af ← 1

2
‖n‖

9: Store Af in face_areas
10: return face_areas

Definition 3.4.5: Interior, Bending and Dihedral Angle
LetM be a triangle mesh and for each face of fijk, vertex fi then the interior angle
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at fi is

θijk = cos−1(〈f̂ij, f̂ik〉)

. For each interior edge fij shared by two triangle faces fijk and flkj then Bending

angle

αjk = sin−1
(
〈f̂jk, Nijk ×Nℓkj〉

)
. For edge fjk shared by two faces fijk and flkj that have a normal face Nijk and

Nlkj then the dihedral angle between two adjacent faces will be

ϕjk = cos−1 (〈Nijk, Nℓkj〉)

. [4]

Area around a vertex of mesh

We need to define the region around a vertex i.e. portion of area owned by a vertex i, there

are many possible types of cells that define region but we only focus on the barycentric

cells which define barycentric area of cell is area of each triangle incident to the vertex

i divided equally among its three vertices.

Ai =
1

3

∑
fijk

Area(fijk) (3.4)

We frequently use this equation such as to make the Laplacian scale-invariant, we normal-

ize by an area Ai, representing the portion of the surface ”owned” by vertex i.

The vertices are 0-form thus if we take the hodge star of it will give us an area mass matrix

and the total area of the mesh remains the same as the sum of diagonal entries of the area
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mass matrix is equal to the total face area.

A =



m1

m2

. . .

m|V |


∈ R|V |×|V |

where,mi = Ai

Algorithm 4 AreaMatrix
1: procedure AreaMatrix(V, F )
2: Input: V ∈ Rn×3, F ∈ Nm×3

3: Output: A ∈ Rn×n (diagonal mass matrix)
4: face_areas← ComputeFaceAreas(V, F )
5: vertex_areas← 0n
6: for each face f = (i, j, k) and area Af do
7: vertex_areas[i] += Af/3
8: vertex_areas[j] += Af/3
9: vertex_areas[k] += Af/3

10: A← diag(vertex_areas)
11: return A

Discrete vertex normal: The Discrete gaussian map for a discrete immersion is the trian-

gle normal but it doesn’t describe the vertex or edge normal. There are many approaches

to describe it but none-of them are exact such as area weighted vertex normal and angle

weighted vertex normal but there is a better approach is to start with smooth and then

apply the principle of discretization.

In smooth, a vector area is the integral of the normal to the surface in area element over

the region as

A =

∫
Ω

NdA =
1

2

∫
Ω

df ∧ df =
1

2

∫
∂Ω

f ∧ df

The idea of discretization is to integrate NdA over dual cell Ci to get our vertex normal.

Let’s consider the dual cell to be a barycentric cell then it’s area will be

=
1

3
A =

1

3

∫
Ci

NdA =
1

3
× 1

2

∫
Ci

df ∧ df =
1

6

∫
∂Ci

f ∧ df
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=
1

6

∑
ij∈∂Ci

∫
eij

f × df =
1

6

∑
ij∈∂Ci

(
fi + fj

2
)× (fj − fi)

=
1

6

∑
ij∈∂Ci

(fi × fj)

Cotangent Weights is the weight associated to the edges means

weij =
width of dual edge
length of primal edge

=
|e∗ij|
|eij|

(3.5)

Consider a triangle meshM = (V,E, F ) by taking hodge star ofM then it’s dual will be

M∗ = (V ∗, E∗, F ∗) and dual center ck and cl for the vertex vk and vl will be inside the

triangle fijk and fijl, where eij ∈ E and it’s dual edge eij ∈ E∗ obtained by joining dual

centers ck and cl and are orthogonal to each other.

Let angle corresponding to edge eij at the vertex vk and vl as αij and βij resp. Dual edge

length

|e∗ij| = vkck + clvl

|eij|
2

cot(αij) +
|eij|
2

cot(βij)

=
|eij|
2

(cot(αij) + cot(βij))

Then edge weight will become

weij =
|eij |
2
(cot(αij) + cot(βij))

|eij|
=

1

2
(cot(αij) + cot(βij)) (3.6)

We knew that the edges represents the 1-form thus if we take the hodge star of them we
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will get the edge weight matrix

W =



w1

w2

. . .

w|E|


∈ R|E|×|E|

3.5 Geometric Measurement on Triangle Mesh

We measure two different types of geometric quantities on triangle mesh

1. Intrinsic quantity depends solely on edge lengths

2. Extrinsic quantity depends on how the triangle mesh is embedded into 3D space.

Definition 3.5.1: Discrete metric(Polyhedral Metric)

A discrete metric l : E → R on an abstract triangulated surfaceM = (V,E, F ) is

defined by

1. Assigning positive lengths to every edge.

2. Ensuring the triangle inequality holds for every face i.e for any triangle of

edge length ℓij, ℓjk, ℓki,

ℓij + ℓjk > ℓki, ℓjk + ℓki > ℓij, ℓki + ℓij > ℓjk.

This special structure allows us for computations to depend only on intrinsic geometry,

independent of 3D embedding(extrinsic geometry).

Therefore, we can say that triangle area and interior angles are intrinsic quantities because

edge length uniquely determine a triangle shape in plane, Heron’s formula and law of

cosines Aijk = 1
4

√
(ℓij + ℓjk + ℓki) (−ℓij + ℓjk + ℓki) (ℓij − ℓjk + ℓki) (ℓij + ℓjk − ℓki)

and θijk = cos−1
(

ℓ2ij+ℓ2ki−ℓ2jk
2ℓijℓki

)
can compute area and define angle directly from edge length alone. Even though compu-

tation may involve edge vectors etc, the final result will only depend on the metric.
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Example : If a curve γ : I →M travels within a single triangle, these measurements such

as total length, curvature, turning angle, etc. are well defined because the triangle’s shape

is fixed by the edge lengths. When the curve crosses an edge shared by two neighboring

triangles, both triangles can be realized in the plane as Euclidean triangles sharing that

edge. Because the shared edge has the same length in both triangles, the two triangles fit

in the plane, and the curve segment that spans them can be treated as a continuous plane

curve.

Thus, the geometry of the triangulated surface with a discrete metric behaves like a flat,

unfolded polyhedron except at vertices where the sum of angles around a vertex may differ

from 2π.

3.6 Discrete Curvature

3.6.1 Discrete Gauss-Bonnet Theorem

Given a discrete immersion f : M → R3, for each triangle(face) fijk ∈ F , the face

normal Nijk (also called the Gauss map value at that face) is defined as:

Nijk =
(df)ij × (df)jk
‖(df)ij × (df)jk‖

This is a unit vector orthogonal to the face fijk. Therefore, the Discrete Gauss Map

assigns one unit normal vector per triangle (a dual 0-form).

Visualization: These face normals can be visualized as points on the unit sphere. Adjacent

normals may be connected by geodesic arcs to represent local curvature change.

Note: The discrete Gauss map does not define normals at edges or vertices.

Definition 3.6.1: Angle Deflect

Consider a mesh manifold M = (V,E, F ) and a set of all triangle incident to the
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Figure 3.3: Discrete Gauss map [5]

vertex vi ∈ V then the angle deflected at the vertex i is

Ωi = 2π −
∑
jk

θijk

, where each triangle contributes an interior angle θijk.

Thus we can say that if Ωi >=< 0 then a positive, negative and zero curvature at that

vertex.

Definition 3.6.2: Discrete Gaussian Curvature
For each ith ∈ V vertex, we define the discrete gaussian curvature as angle defect

as follows

(KdA)i = Ωi = 2π −
∑
jk

θijk

,

We know that gaussian curvature at the boundary of the surface vanishes but we can flatten

the boundary vertices without stretching and can measure how straight the boundary is.
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Figure 3.4: Left : Angle deflect and discrete gaussian curvature, Right : discrete geodesic
curvature [5]

Definition 3.6.3: Discrete Geodesic Curvature
A measure of angle deflect around the boundary vertices such that

ki = π −
∑
fijk

θjki

For a smooth surface with genus g, the total gauss curvature is

∫
M

KdA = 2πχ

where χ is the characteristic number. We want to use the angle deflection definition of

gaussian curvature to discretise this theorem as follows.

Theorem 3.6.1: Discrete Gauss Bonnet Theorem
For the closed, discrete surfaceM = (V, F,E) of genius g, the total angle deflected

at the ith vertex is ∑
i∈V

Ωi = 2πχ(M)
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Figure 3.5: Gaussian-curvature

Proof
LetM = (V,E, F ) be a mesh manifold, having a set of vertices, edges and faces as

V,E & F resp. We know that curvature is concentrated at vertices of mesh. Thus,

curvature at each vertex is the angle defect Ωi. The total curvature is equal to the

sum of total angle deflect at each vertices of the mesh

∑
i∈V

Ωi =
∑
i∈V

(
2π −

∑
i

θijk

)

Summing over all vertices and rearranging then

∑
i∈V

Ωi = 2π|V | −
∑
i∈V

∑
j ̸=k

θijk

= 2π|V | −
∑

interior angle all triangle

θ

But the interior angle of the triangle is π. Thus, sum of all triangle’s interior angle

will be π|F |
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So total angle defect

∑
i∈V

Ωi = 2π|V | − π|F |

= 2π(|V | − |F |
2

)

= 2π(|V |+ |F | − 3

2
|F |)

Every face is a triangle and each triangle has 3 edges and 3 vertices but each edge

is shared by 2 face for a closed triangle mesh thus we have identity 3|F | = 2|E| =

|F | = 3
2
|E| means each edge shared by 2 triangles thus

∑
i

Ωi = 2π(|V | − |E|+ |F |)

using Euler characteristic for triangulated surfaceχ = |V | − |E|+ |F |

∑
i

Ωi = 2πχ

Definition 3.6.4: Mean Curvature
how that the mean curvature normal vector at vertex i is

Hini =
1

2

∑
j∈N(i)

(cotαij + cot βij)(fj − fi)

We know that the smooth mean curvature of the surface is the integration ofHNdA over

the region Ω as

∫
Ω

HNdA =

∫
Ω

df ∧ dN =

∫
Ω

dN ∧ df =

∫
Ω

N ∧ df

,

Now, let’s apply the discretization principle by integration ofHNdA over the barycentric

cell Ci Then
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Figure 3.6: Mean-curvature

∫
Ω

N ∧ df =
∑
j

∫
e∗ij

N ∧ df

, where for all eij ∈ E there exist a dual edge e∗ij such that

(HN)i =
∑

j∈N(i)

wij(fj − fi)

where wij = cotαij + cot βij and Ai is the Voronoi area or 1/3 of the surrounding triangle

areas.

The cotangent weights come from discretizing the divergence theorem over the region

around vertex i, approximating the Laplacian. Therefore

HiNi =
1

2

∑
j∈N(i)

(cotαij + cot βij)(fj − fi)
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Definition 3.6.5: Principal Curvature

For a given f : M → R3 discrete surface then the discrete principal curvature are

κ1 =
Hi

Ai

−

√(
Hi

Ai

)2

− Ki

Ai

, κ2 =
Hi

Ai

+

√(
Hi

Ai

)2

− Ki

Ai

. Where Hi discrete mean curvature at vertex i, Ki discrete Gaussian curvature at

vertex i and Ai area of the vertex region

Figure 3.7: Min-curvature Figure 3.8: Max-curvature

For a given f : M → R3 discrete surface, we have a task about the Gaussian, mean,

and geodesic curvature but not about discrete principal curvature. So, smooth mean and

Gaussian curvature are

1. Mean curvature: H = κ1+κ2

2

2. Gaussian curvature: K = κ1 · κ2

where, κ1, κ2. by solving this quadratic equation, we will get the principal curvatures

κ1 = H −
√
H2 −K, κ2 = H +

√
H2 −K

In the discrete setting, we mimic the smooth relationships using discrete approximations

but the problem is that discrete gaussian is the quantity of vertices and discrete mean

curvature is the quantity of edges. How to use quantities defined on different places for

computation of the principal curvature, the one idea could be vertex mean curvature means

integrating the edge mean curvature over the neighbors of the vertex i.
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Discrete Gaussian Curvature at vertex i.

Hi =
1

4

∑
eij

lijϕij

, where ϕij is the dihedral angle between two faces shared by common edgeeij and lij is

the edge length.

We know that Hi is the total mean curvature over the area of dual cell Ai thus mean

curvature at the vertex will be Hi

Ai
similarly geodesic curvature at vertices will be Ki

Ai
.

Now we add these discrete quantities which are scalar value in the smooth formula Then

the discrete principal curvatures become

κ1 =
Hi

Ai

−

√(
Hi

Ai

)2

− Ki

Ai

(3.7)

and

κ2 =
Hi

Ai

+

√(
Hi

Ai

)2

− Ki

Ai

(3.8)

This matches the exact smooth derivation.

3.6.2 Laplacian Operator

Laplacian Operators exist in a variety of applied mathematics problems involving geom-

etry of curved surfaces and physical models of complex systems and we needed a compu-

tational way to solve these models on the actual curved surfaces. Therefore, I wanted to

discretize the Laplacian operator such that the physical model can be solved onto a discrete

surface(triangular mesh).

There are two different ways of discretization of the laplacian operator

1. Finite Element Method(FEM)

2. Discrete Exterior Calculus(DEC)

FEM and DEC both lead to the same mathematical formula(cotangent) but through a dif-
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ferent approach. Here I have used the DEC approach and mean curvature relationship

with the laplacian operator on curved surfaces.

Definition 3.6.6: Discrete Laplacian Operator

Consider f : M = (V,E, F )→ R3 be discrete surface then the mean curvature of

the surface is ∆fi = 2(HN)i at vertex i of a triangle mesh then laplacian operator

will be

∆fi :=
1

2Ai

∑
j∈N(i)

(cotαij + cot βij)(fj − fi)

, where fi is the position vector of vertex i ∈ V , j ∈ N(i) are star(i) neighboring

vertices of i and αij, βij are the two angles opposite the edge fij .

Note: We have divide our cotangent formula with the area of Ci cell to get the

average value over the cell
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Applications in Geometric Processing

4.1 Smoothing

4.1.1 Discrete Curve Smoothing

A discrete curve is polygonal, an approximate representation of the smooth curve that

has noise. For plane and space discrete curves, we use uniform laplace flow which is the

second derivative of the curve that mimics curvature along the curve by removing noise /

high frequency terms.

Let γ : I → Rd be a discrete curve defined as γ(i) = γi ∈ Rd ∀ i ∈ I . Uniform

laplacian measures how much γi deviates from being between its neighbors. Thus, the

heat diffusion equation
∂γ

∂t
= ∆γ

It can be discretize using finite difference approximation as

γi+1 − γi
δt

=
1

2
(γi−1 − γi) +

1

2
(γi+1 − γi) =

1

2
(γi−1 − 2γi + γi+1) = ∆γi
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Figure 4.1: Finite difference approximation of laplacian of curve

So we can write in explicit form as

γi+1 = γi + δt
d2γi
ds2

= γi + δt∆γi

The vector matrix formulation of the above equation is

γnew = γ + δtLγ

where

L =
1

2



−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2 · · · 0

...
... . . . . . . 1

0 0 · · · 1 −2


∈ Rn×n

, a small time step δt and γ ∈ Rn×2
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Algorithm 5 Laplacian Smoothing of Discrete Plane and Space Curve
Require: γ ∈ Rn×2 or Rn×3 ▷ Discrete points of the plane and space curve
Require: δt > 0 ▷ Time step size
Require: T ∈ N ▷ Number of smoothing iterations
Ensure: γ ▷ Smoothed curve points
1: function Laplacian Smoothing(γ, δt, T )
2: n← number of curve points
3: Initialize L ∈ Rn×n as a zero matrix ▷ Construct 1D Laplacian matrix
4: for i = 0 to n− 1 do
5: L[i, i]← −2
6: if i > 0 then
7: L[i, i− 1]← 1

8: if i < n− 1 then
9: L[i, i+ 1]← 1

10: L← 1
2
· L ▷ Iteratively apply Laplacian smoothing

11: for t = 1 to T do
12: γ ← γ + δt · L · γ
13: return γ

Figure 4.2: Smoothing of plane curve
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Figure 4.3: Smoothing of the space curve(helix)
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4.1.2 Discrete Surface Smoothing

Discrete surface smoothing is concerned with design and computation of smooth functions

f : M → Rn on a triangle mesh and these functions can be chosen to describe vertex

position, texture coordinates or displacement etc. There are several techniques to perform

the mesh smoothing can be classified as

We apply mathematical filters to the mesh geometry to remove the noise.

1. Laplacian Smoothing : We will use Laplace-Beltrami Operator to simulate heat diffu-

sion on arbitrary mesh surfaces via averaging each vertex by its neighbours.

2. Spectral Filtering : Laplacian Beltrami Operator spectral decomposition provides in-

formation of spectrum of eigenfunctions and values of mesh. Filtering high frequency

components and smoothing noise while maintaining mesh structure.

3. Bilateral-Smoothing : It is an edge-preserving filter that takes account of spatial close-

ness and geometry similarity to reduce noise while preserving important features like sharp

edges.

Laplace Smoothing

Consider the heat equation
∂u

∂t
= ∆u (4.1)

, with initial condition u(x0, t0) = u0.

Now, our aim to find the function u(x, t) where u ∈M

We know that laplacian-beltrami operator L when applied on u can be written in discrete

forms as

(Lu)i =
1

2Ai

∑
j∈N(i)

(cotαij + cotβij)(uj − ui)

ALui =
1

2

∑
j∈N(i)

(cotαij + cotβij)(uj − ui)
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Let take AiL = W and we know the Ai = A area weight matrix. Therefore,

Wui =
1

2

∑
j∈N(i)

(cotαij + cotβij)(uj − ui)

and

AL = W =⇒ L = M−1W (4.2)

To solve the heat equation, we first discretize u(x, t) using different schemes like Euler

forward, Euler Backward etc.

Figure 4.4: Laplacian smoothing by explicit
method

Figure 4.5: Laplacian smoothing by implcit
method

Explicit Method by Euler-Forward Scheme :

ut − u0

δt
= (Lu)t

ut = u0 + δtLut

ut = (I + δtL)u0

let’s put the value of L in equation we get

ut = (I + δtA−1W )u0 (4.3)
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This equation can be solved using the Euler integration method.

Implicit Method by Euler-Backward Scheme : The heat equation can be written in

discrete form using euler-backward scheme as

ut − u0

δt
= (Lu)t

ut − u0 = δtLut

(I − δtL)ut = u0

(I − δtA−1W )ut = u0

(A− δtW )ut = Au0 (4.4)

, where A ∈ Rn×n be mass matrix, W ∈ Rn×n be laplacian, t > 0 be diffusion time,

u0 ∈ Rn be initial function and ut ∈ Rn be smoothed function.

Now the system of equations are symmetric and we can use the cholesky factorization to

solve it.

Spectral Smoothing

Consider the discrete diffusion equation implicit form

(A+ δtW )ut = Au0

and take the laplacian operator L and build a generalized eigenvalue problem

Lϕj = λjAϕj

Now, let’s collect the first k eigen-functions {ϕ1, . . . , ϕk} into a matrix Φ ∈ Rn×k, and

their corresponding eigenvalues {λ1, . . . , λk} into a diagonal matrix Λ ∈ Rk×k such that

LΦ = AΦΛ
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Figure 4.6: Eigenfunction of laplacian

Φ⊤(A+ δtW )Φ = Ik + tΛ (4.5)

How to reconstruct the function u Assume the solution ut lies in the subspace spanned

by the first k eigen-functions

ut = Φαt

for some coefficients αt ∈ Rk. Substitute into the diffusion equation

(A+ δW )(Φαt) = Au0

Φ⊤(A+ δW )Φ(αt) = Au0

from equation 4.5

Ik + tΛαt = Φ⊤Mu0

Let’s β = Φ⊤Mu0 ∈ Rk which is projection of u0 onto the eigenfunction basis such that
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αt = (Ik + δtΛ)−1β

Finally, reconstructed u is

ut = Φαt = Φ(Ik + tΛ)−1Φ⊤Au0

where

(αt)j =
βj

1 + λj

which requires only element wise multiplication.

Practically, The heat equation
∂ut

∂t
= ∆ut

. Consider ut = Φαt then ∆Φ = −ΛΦ Thus

∂ut

∂t
= ∆ut = −Λαt

By solving this equation we will get

αt = βexp(−Λt)

and element wise will be

(αt)j = βjexp(−λjt)

.
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Algorithm 6 Spectral Smoothing of Function f on Mesh
Require: Function f ∈ Rn, mass matrix A ∈ Rn×n, Laplacian W ∈ Rn×n, number of

modesK, smoothing parameter t
Ensure: Smoothed function ft ∈ Rn

1: Compute generalized eigen-decomposition:

WΦ = AΦΛ where Φ ∈ Rn×K , Λ = diag(λ1, . . . , λK)

2: Project input function onto spectral basis:

β = Φ⊤Af ∈ RK

3: Apply spectral filtering (diffusion decay):

αt = e−tΛβ where (e−tΛ)j = e−tλj

4: Reconstruct smoothed function:

ft = Φαt

5: return ft

Optimization-based methods

We define an objective(energy) function that balances smoothness with original geometry.

L0 Smoothing : The mesh model may consist of flat regions, then we perform mesh de-

noising by L0 minimization, which maximizes flat regions and gradually removes noise

while preserving sharp features.

Energy Optimization Consider an energy function E : M → R defined as

E(u) = Esmooth(u) + Eerror(u)

, WhereEsmooth(u) smoothness energy of surface andEerror(u) fidelity energy is the error

to the original surface.

Smoothing of the surface can be modelled as an optimization problem via minimizing the

energy function that balances the smoothness energy and keeping the smooth surface close

to the original surface.
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Figure 4.7: Energy optimization method for surface smoothing

min
u

E(u) = Esmooth(u) + Eerror(u) (4.6)

Now, minimizing smooth energy of the surface can be seen as reducing the curvature

variation using laplacian across the surface.

∆Mu = −2H · n

. Thus the goal is to makeH = 0 then the surface is called minimal(developable) surface

or H = constant. Suppose that we are only minimizing the H then it can lead to u = 0

which collapses the geometry of the surface. Therefore, we will apply regularizer then

energy functional will become

min
ũ

E(ũ) = min
ũ

∫
M
‖∆Mũ‖2 dA+ w‖ũ− u‖2 (4.7)

Where,Esmooth(ũ) = ‖∆Mũ‖2 encourages smoothness (small curvatureH) andEerror(ũ) =

‖ũ − u‖2 penalizes deviation from original surface and w is a tuning parameter that bal-

ances deviation from original surface and smoothing.

Let’s discretize the energy functional using mesh vertices and area

min
ũ

E(ũ) = min
ũ

n∑
i=1

Ai

(
‖Lũi‖2 + w‖ũi − ui‖2

)
where, L is the laplacian-beltrami operator, ui ∈ R3 vertex original position and ũi ∈ R3
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vertex optimized position. So, matrix representation of

ũ =



ũ1x ũ1y ũ1z

ũ2x ũ2y ũ2z

...
...

...

ũnx ũny ũnz


∈ Rn×3

Then energy functional will be

E(ũ) =
∑

u∈{x,y,z}

(Lũ)TM(Lũ) + w(ũ− u)TM(ũ− u) (4.8)

where, L ∈ Rn×n: laplacian matrix, M ∈ Rn×n is mass matrix and ũ, u ∈ Rn vertex

coordinates.

∂E

∂ũ
= 2LTMLũ+ 2wM(ũ− u) = 0

ccccccc (4.9)

Solving this systems to obtain the min value of u.

4.2 Simulation of Heat Equation on Mesh

One of the most common applications of the Laplace-Beltrami operator in geometry pro-

cessing is simulating heat diffusion over arbitrary surfaces. The continuous heat equation

is given by

∂u

∂t
= ∆u,

where u is a function defined on the surface, and ∆ is the Laplace-Beltrami operator.
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Given an initial heat distribution u0, the heat distribution at a later time t, denoted ut, can

be computed by discretizing the equation. Using a single backward Euler time step, we

arrive at

(I − t∆) ut = u0,

where I is the identity operator and t is the time step.

Figure 4.8: Simulation of heat equation for
f(x) = sin(x)

Figure 4.9: Simulation for f(x) = δ(x)

In discrete differential geometry, the Laplacian matrix L used in computations is typically

positive semidefinite, while the mathematical Laplacian ∆ is negative semidefinite. In

practice, we use L ≈ −∆. To account for this, we substitute ∆ with −L in the equation

above. Additionally, we multiply both sides by the mass matrix A (which encodes area

weights for the mesh vertices), resulting in

(A+ tW ) ut = Au0,

whereW is the stiffness matrix (the discrete Laplacian), andA is the diagonal massmatrix.

This equation forms a sparse linear system because both A and W are sparse matrices—

most entries are zero, reflecting the local connectivity of the mesh. Although the system

has as many equations as there are vertices (which can be very large), the sparsity allows

for highly efficient solution methods that are much faster than those for dense systems.
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Figure 4.10: Simulation of heat equation on bunny mesh

Importantly, solving this system does not require explicitly computing the inverse of (A+

tW ); instead, modern numerical solvers can efficiently find ut directly.

4.3 Geodesic Computation on Discrete Surface

We know that the geodesic on the surface is the shortest path between any two points on

it. For example AIR India flights wanted to travel from New Delhi to Canada then what

will be the shortest path required to travel from departure to reach the destination.

4.3.1 Approximate Geodesic Computation

Triangle meshes are composed of vertices, edges, and faces. When computing approxi-

mate geodesics, these meshes are commonly abstracted as graphs, where vertices become

graph nodes and edges connect nodes and are weighted by their euclidean lengths. Thus,

This graph representation allows us to use classical shortest-path algorithms, such as Di-

jkstra’s algorithm, to compute geodesic distances.

Dijkstra’s algorithm is used to find the shortest path from a source vertex to all other

vertices along edges of the graph and it’s faster and easy to implement, because it restricts

the paths to mesh edges therefore only gives an approximation of true geodesic distance.

The true geodesic may go through the cut across the triangle interior, not only edges. So, to
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improve the approximation we needed to consider the distance propagation within triangle

faces which is called a fast marching algorithm.

4.3.2 Heat Method for Geodesic Computation

The geodesic path computation across the manifold mesh, uses the diffusion of the dirac

delta δx function.

Given a pointx, we start from a dirac function δx centered on x, then heat equation(implicit

form)

(M − δtLc)ui+1 = Mδx (4.10)

It diffuses alot heat to the point close to the x and the amount of heat decreases as we move

away from the point x. So, we need to evaluate the vector field X using formula

X = − ∇ut

||∇ut||

which is opposite the normalized direction of gradient of diffusion(going geodesically

towards x.

Now, solving the poisson equation

∆ϕ = −∇ ·X = ∇ · ∇ut

||∇ut||
= ∇2ut

. We obtain our geodesic paths ϕ and x is the starting point therefore we put a constraint

distance to x is zero.
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Figure 4.11: Front : Fast marching algo-
rithm

Figure 4.12: Back: Dijkstra’s shortest path
algorithm

Figure 4.13: Front : Geodesic Figure 4.14: Back: Geodesic
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Algorithm 7 Geodesic Distance via Heat Method
Require: Mesh with Laplace matrix W ∈ Rn×n, mass matrix A ∈ Rn×n, source point

index x, time step t = h2

Ensure: Approximate geodesic distance φ ∈ Rn from source point x

1: Initialize Dirac delta: δx ∈ Rn, where (δx)i =

{
1 if i = x

0 otherwise
2: Solve heat diffusion:

(A+ tW )ut = Aδx

3: Compute normalized gradient field:

X = − ∇ut

‖∇ut‖

4: Solve Poisson equation:
Wφ = A(∇ ·X)

5: Normalize distance:
φ← φ− φ(x)

6: return φ
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Conclusion

This dissertation has presented a comprehensive study of the discrete differential geom-

etry(DDG) and its applications in shape modeling and geometric processing. The main

objective was to develop the discrete analogues of the smooth differential geometric con-

cepts and creation of a mathematical-cum-computational framework for analysis and ma-

nipulation of the curves and surfaces through discretization. Rather than discretizing the

equations of smooth differential geometry, the focus was on discretizing the geometry it-

self. Graphs were used to represent discrete plane and space curves, while triangle meshes

served as discrete surfaces, embedded in space to form piecewise linear surfaces.

5.1 Summary of Contributions

The dissertation begins with discrete curves, introducing key geometric quantities such as

tangent, normal, curvature, and torsion in their discrete formulations. These definitions

enabled the discretization the fundamental theorem of the curve in plane and space and fa-

cilitated the design algorithm for curve reconstruction that preserves the intrinsic structure

of discrete curves.

After discrete curves work progressed to the discrete surfaces, where defined trianglemesh

were discrete surface and embedding of discrete surface into space as piecewise linear

surface. The topological and geometric properties of these surfaces were analysed with
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detailed discussion of discrete differential, tangent space, normal and immersion etc.

The discrete curvatures including geodesic, gaussian, mean and principle were computed

and the concept of the diflect angle, to compute gaussian curvature. The discrete Gauss-

Bonnet theorem was stated and proven, which highlights the deep connections between

discrete and smooth geometry.

Particular attention was given to Laplacian-Beltrami Operator, which is a cornerstone

of modern discrete geometric processing. Two primary discretization approaches were

discussed for it.

1. Finite Element Method(FEM) : Widely used in scientific and engineering appli-

cations for solving partial differential equations.

2. Discrete Exterior Calculus(DEC) : specifically used for most of our discretization

tasks.

The final part of the dissertation focused on practical application of discrete differential

geometry based on the idea of Laplacian beltrami operator.

1. Smoothing of discrete curves and discrete surface

2. Simulation of heat equation on mesh

3. Geodesics on the discrete surface

5.2 Future Research Direction

Discrete differential geometry remains an active and rapidly evolving field of research. It

presents numerous open challenges to both theoretical and applied research and its real

life applications span a wide range of industries, from manufacturing to entertainment.

1. Development of new discretization methods : They better preserve the geometric

quantities and topological properties of smooth geometric objects such as invariance un-

der transformation remains a central and open problem.[2] The different discretizations

can preserve different properties and understanding these trade offs is the key for reliable
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geometric computation.

2. Mathematical Analysis of Discrete Models : There are fundamental questions re-

garding the rigorous analysis of convergence rates and stability of discrete models as they

approximate their smooth counterparts. This includes studying how discrete curvatures,

geometric flows, and invariants behave under mesh refinement, which is essential for en-

suring the reliability of discrete geometric algorithms.[2]

3. Discrete Conformal and Holomorphic Mappings : The applications of discrete con-

formal mappings and discrete holomorphic functions—especially for triangle and quadri-

lateral meshes—remains a vibrant area. Progress here has direct implications for mesh

parameterization, texture mapping, and computer graphics.[6]

4. Data-Driven Geometric Processing : Integrating geometric processing with deep

learning models operating on graphs, meshes, and point clouds enables the extraction and

learning of complex geometric features beyond the reach of traditional methods. Research

in this direction can lead to advances in shape classification, correspondence, parameteri-

zation, and generative modeling, pushing the boundaries of what is possible in geometric

data analysis.

The dissertation has contributed to the theoretical foundation of discrete differential geom-

etry and practical applications like surface smoothing, scientific simulation and geodesic

computation in geometric processing. As computational geometry continues to intersect

with the modern data driven methods then discrete differential geometry undoubtedly will

play a pivotal role in shaping the future of geometric modeling, analysis and simulation.
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